GENETIC ALGORITHM APPROACH TO THE SEARCH FOR
GOLOMB RULERS*

Stephen W. Soliday
soliday@garfield.ncat.edu

Abdollah Homaifar
homaifar@garfield.ncat.edu

Gary L. Lebby
lebby@garfield.ncat.edu

Department of Electrical Engineering
North Carolina A&T State University
Greensboro, North Carolina 27411

Abstract

The success of genetic algorithm in find-
ing relatively good solutions to NP-complete
problems such as the traveling salesman
problem and job-shop scheduling problem
provided a good starting point for a ma-
chine intelligent method of finding Golomb
Rulers. These rulers have been applied to
radio astronomy, X-ray crystallography, cir-
cuit layout and geographical mapping. Cur-
rently the shortest lengths of the first sixteen
rulers are known. The nature of NP-complete
makes the search for higher order rulers dif-
ficult and very time consuming. While the
shortest lengths for each order are important
as a mathematical exercise, finding relatively
short high order valid rulers has a more im-
portant impact on real world applications.
Genetic algorithm has shown good results in
finding usable Golomb Rulers in minutes or
hours instead of weeks or months.

1 INTRODUCTION

Golomb Rulers are a class of undirected graphs that
were first described by Solomon W. Golomb, Profes-
sor of Mathematics and Electrical Engineering at the
University of Southern California. The Golomb Ruler
measures more discrete lengths than the number of
marks it carries. It does not measure the same dis-
tance twice (Bloom, Golomb 1977). For example, a
normal 12 inch ruler contains 13 marks and is capable
of measuring 12 discrete lengths. Each measurement
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Figure 1: Three Perfect Golomb Rulers

is made by summing the lengths of the segments be-
tween two marks. There are 78 combinations of two
marks in the 13 mark ruler. Of these 78 combinations
only 12 of them are unique measurements, and the
other 66 are redundant. By making the lengths of the
segments of the ruler different from one another, it is
possible to make more unique measurements than the
number of marks on the ruler. For most permutations
of the segments of these rulers, there still exist mea-
surements that are redundant. The few permutations
that produce rulers with no repeats in measurements
are known as Golomb Rulers.

For a ruler to be a perfect Golomb Ruler it must meet
the following criteria. First, it must be constructed of
segments of unique integral length. In other words, the
length of a segment must be some integer number of
units and no two segments in a given ruler may have
the same length. Second, the ruler must be able to
measure discrete spans. That means that the distance
between two given marks must be a unique length for
that ruler, with no two spans equaling the same length.



Finally, for the class of rulers known as perfect rulers,
all the intervals between one and the overall length of
the ruler must be measured without skipping a mea-
surement. Unfortunately there are only three perfect
rulers. Written in the mark representation, the three
rulers in Figure 1 are:

n = 0, 1
0, 1, 3
0,1, 4, 6
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The numbers correspond to the unit positions of the
marks on the ruler. These three rulers are capable of
measuring from 1 to their overall length without re-
peating or skipping an interval. Note that if we were
to permute the n = 4 ruler from (0, 1, 4, 6) to (0, 1, 3, 6)
it would no longer be a Golomb Ruler. This permuted
ruler, would measure the intervals (1,2, 3,3, 5,6). No-
tice that the span of length 3 is measured twice and
the span of length 4 is never measured. Figure 1 shows
the only perfect rulers (Bloom, Golomb 1977).

If there only exist three perfect Golomb Rulers then a
new definition must be made. More to the point, one
of the constraints of the perfect Golomb Ruler must be
relaxed. The only constraint that may be relaxed and
still leave us with a useful tool is the one that states
that none of the distances between 1 and the overall
length may be skipped. Given this leniency on the
skipping of intervals, it may be suggested that there
would be an infinite number of n = 5 rulers. While
this is true, the shortest ruler possible with n = 5 is
what is desired (Carter, Robertson, et.al. 1984).

Golomb Rulers represent a unique class of NP-
complete problems. Unlike the Traveling Salesman
problem (TSP), which may be classified as a “com-
plete ordered set”, the Golomb Ruler may be classified
as an “incomplete ordered set”. The optimum solu-
tion for the latter is a single permutation of a set of m
elements taken n at a time, where n € m.

Arthur C. Clarke, in a discussion about a bid for an
engineering project, wrote (Clarke 1990):

“How long will it take?”
“Do you want it quick, cheap, or good?
I can give you any two.”
“Fairly quick and very good...”

In an ideal world we want the best solution to a prob-
lem. However, in the real world of budgets and dead-
lines we find that the choice is usually to do things fast
and cheap. Here is where a goal of optimization comes
in. Given the constraints of time and of dollars we
cannot always find the perfect solution to a problem,
and so we must find good solutions. The focus of this

paper is to find high order good Golomb Rulers. To
date the highest order ruler whose shortest length is
known is the ruler with 16 marks (Robertson, 1994).
Rulers of this order would require years of exhaustive
searching, and weeks and sometimes months if heuris-
tics are employed. See Table 1. In this paper a genetic
algorithm (GA) is used to evolve good rulers of order 5
to 16. The GAs were executed on a desktop computer
and the execution times were between 1 second and 26
minutes each.

Golomb Rulers have been applied to radio astronomy,
X-ray crystallography, circuit layout and geographi-
cal mapping (Bloom, Golomb 1977; Carter, Robert-
son et. al. 1984). One of the researchers whose
work is directly affected by the solution of Golomb-
Rulers is a Geophysicist at the National Oceanic and
Atmospheric Administration in Rockville, MD. Using
VLBI (Very-Long Baseline Interferometry) he is en-
gaged in finely detailed measurements of the earth.
In base line interferometry, phase difference measure-
ments are made between two separated telescopes.
This is then repeated for different separation distances.
Using Fourier analysis, the various phase differences
may be used to reconstruct the total phase difference
and thereby recover the angle between the radio source
and the baseline, with a high degree of resolution. If
the separation distance between two pairs of antennas
is not significantly unique, then the measurements are
redundant. By placing the antennas on the marks of a
large Golomb ruler, the researcher is assured that no
two measurements will be redundant (Carter, Robert-
son et. al. 1984). Remember that with the 13 mark
inch ruler, out of 78 pairs of measurements only 12
were unique. When the cost of observing time is con-
sidered, 12 percent efficiency is rather undesirable.

2 EXHAUSTIVE SEARCH WITH
HEURISTICS

2.1 NP-COMPLETE

Golomb Rulers represent a class of problems known as
NP-complete. The exhaustive search, without heuris-
tics, of such problems is impossible for higher order
models (Soliday 1990). As another mark is added to
the ruler, the time required to search the permutations
and to test the ruler becomes exponentially greater.

Earlier it was stated that the Golomb Ruler is an in-
complete ordered set. Golomb Rulers are classified by
their order (n), where n indicates the number of marks.
For a ruler this means that there are n — 1 segments.
For a given order n and a maximum segment length
m the number of permutations, or possible rulers that



may be formed is:

number of rulers =

H(7) )

m!
2(m—n+1)!

The 2 in the denominator, of Equation 1, reflects that
fact that mirror images do not produce unique rulers.
The number of tests made on an order n ruler in order
to determine redundancy of measurement and thereby
check the validity of the ruler, is:

number of spans =

Let us imagine for a moment that we possessed a hy-
pothetical computer able to measure and compare the
discrete intervals of our Golomb Rulers at a fictitious
speed of one measurement and test every nanosecond
(10~° seconds). How long would it take to exhaus-
tively search for the shortest n mark ruler with a max-
imum individual segment length of m?

n(n—1)m!

-9
mlo sec (3)

search time =

Table 1 provides some of the times that would be
required for an exhaustive search with no heuristics.
Note that the last entry represents 4.6210° times the
age of the known universe (Kaufmann 1985).

Table 1: Execution times for non—heuristic exhaustive

searches

n | m | time units
6 7 | 1.89e-05 | sec

8 | 13| 0.121 sec

10 | 19 | 12.57 min
12 | 30 | 2.28 years
14 | 36 | 2.07e+04 | years
16 | 49 | 3.92e+409 | years
18 | 65 | 1.61e+15 | years
20 | 83 | 9.36e+20 | years

2.2 HEURISTICS

Clearly it can be seen that exhaustively searching for
the shortest Golomb Rulers is impractical and some-
times impossible. The search space may be drastically
reduced if heuristics are used (Dewdney 1985). At

each stage of permutation generation and ruler con-
struction, tests are performed. The principle method
of testing a Golomb Ruler is to maintain a history list
of measurements. As each pair of marks is tested the
span between them is compared to the history list. A
match would invalidate the ruler. The principle time
cutting theorem states that “any piece of a Golomb
Ruler must itself be a Golomb Ruler” (Bloom, Golomb
1977). As soon as a piece of a ruler is invalidated,
all permutations of the unchecked segments may be
skipped.

3 USING GENETIC ALGORITHM
TO SEARCH FOR GOLOMB
RULERS

The success of genetic algorithm in finding relatively
good solutions to NP—complete problems such as the
traveling salesman problem (Goldberg, Lingle 1985;
Oliver, et.al. 1987; Grefenstette, et.al. 1985; Jog,
et.al. 1989; Liepins, et.al. 1990; Whitley, et.al. 1989;
Lid 1991; Homaifar, et.al. 1992,1993) and job—shop
scheduling (Liepins, et.al. 1987; Davis, Smith 1985;
Whitley, Starkweather 1989; Cleveland, Smith 1989)
provided a good starting point for a machine intelligent
method of finding good Golomb Rulers. The theorem
that provides a means of removing unnecessary per-
mutations in the heuristic-based approach also lends
a hand in the GA approach. The theorem stated that
“any piece of a Golomb ruler is itself a valid ruler”.
This is essentially the building block hypothesis (Gold-
berg 1989). When the GA begins, the rulers will
contain low order Golomb Rulers within themselves.
As the population approaches the optimum point, the
rulers will contain higher order Golomb rulers.

3.1 REPRESENTATION

Typically Golomb Rulers are represented by the po-
sition of the marks on the ruler. Using this method
created problems with developing a good crossover op-
erator. It became clear early on that the Golomb
Ruler represented permutations of an incomplete or-
dered set. The representation used in this program is
one in which the length of each segment is represented
by the element of an integer array. The position of a
segment on the ruler corresponds to an index for the
array (if ruler(5) = 7, then the fifth segment on the
ruler has a length of seven.)

In order to assure unique segment lengths, the first
representation tried contained not one but two lists of
ruler segments. The first list was the ruler and the
second list was the surplus. Mutation was performed



by either swapping ruler segments with each other,
thereby creating a new permutation, or by swapping a
ruler segment with a surplus segment.

By introducing multiple fitness criteria, a simpler rep-
resentation replaced the two list method. In this paper
only the ruler segments are maintained in the list. This
effectively reduced the search space but required mod-
ifications to the simple GA. Each of the modifications
will be discussed in the separate sections below.

3.2 INITIAL POPULATION

The initial population was chosen at random. This was
accomplished by loading an array with the numbers 1
to m. Here the original concept of using a ruler and
a surplus was maintained. The positions 2 thru m
were then scrambled. Scrambling consists of randomly
selecting two positions in the array ¢ and j with ¢ # j.
The values at the two positions are then swapped 4; =
A;. This random swapping was done m/2 times. The
purpose of only swapping the elements 2 thru m is to
assure that the segment length 1 is retained in the ruler
portion of the list. The next step is to copy the first n—
1 elements into the ruler array. Next the ruler itself is
randomized by using the same swapping method, this
time including the segment length 1. Finally the ruler
is aligned to prevent mirror image representations. See
Section 3.6

3.3 EVALUATION

There are two fitness criteria of a ruler with unique seg-
ment lengths. The first criterion is the overall length
of the ruler, and the second criterion is the number
of repeated measurements. The second fitness crite-
rion is the most important: if and only if there are no
repeated measurements is the ruler a Golomb Ruler.

3.3.1 SCORING THE RULERS

A histogram of lengths is built by measuring the spans
of all combinations of adjacent segments. The sum
of the segments is the overall length. All values in
the histogram are decremented by one, anything less
than zero was considered to be zero. The sum of the
histogram then becomes the number of repeated mea-
surements. These two values were used along with a
unique list of coefficients to produce a fitness function.
The goal of the GA was to maximize the fitness func-
tion.

Figure 2: Comparison of (Repeats) vs. (Length)

3.3.2 FITNESS FUNCTION

Traditionally GAs are used to maximize fitness func-
tions. However, the two fitness parameters in this ap-
plication must be minimized (repeats must go to zero,
and overall length should be a small as possible.) The
fitness score of an individual should rise exponentially
as it approaches the optimum point. To accomplish
this a constant scale value was divided by the product
of two polynomials. Figure 2 shows the surface created
by the following equation.

scale
(Wr,04+W, 1 R+W, > R?)

fitness =

4
| 1 (4)
(Wi,04Wi,1 (L—Wi,5)+ Wi 5(L-Wi 3)?)

Here the subscripts R and L represent the number of
repeats in measurement and the overall length. The
highest point on the dark band in Figure 2 represents
the optimum point for an order 8 ruler. Figure 3 illus-
trates the ranking of fitness surrounding the optimum
point (higher numbers are better) Using a spreadsheet
that displayed both Figure 2 and a linear represen-
tation of Figure 3, the scale and the six weights were
manually adjusted. The scale was used only to put the
average fitness at a reasonable number. The fitness at
the optimum point was arbitrarily placed around 100.
By altering the weights to visually provide a smooth
gradient that was steeper for the number of repeats
than for the length, good fitness functions could be
produced for each order ruler. The constraints set
by Figure 3 force the GA to favor lower repeats over
shorter lengths. This is also accomplished by making
the gradient in the direction of lowering repeats greater



than in the direction of decreasing overall length.
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Figure 3: Rank of scores surrounding the optimum
point

3.4 MUTATION

The mutation operator consisted of two types of mu-
tation. A mutation could result in either a permuta-
tion in the segment order, or a change in the segment
lengths. Mutation was handled individually for each
segment in the ruler. For each ruler segment a ran-
dom number was generated and this was compared to
the probability that mutation will occur (Pp,). If the
probability was satisfied, a new random number was
generated. This number decided whether the mutation
would result in a permutation of segment order or if
the mutation would result in changing the segment’s

length (Py).

If it was determined that the mutation should be in the
form of a permutation, then another segment would
be chosen at random and the positions of the two seg-
ments would be swapped. However, if the mutation
should produce a change in segment length then an
integer number was repeatedly chosen at random be-
tween 2 and m until a number was found that was not
currently being used in the ruler. The segment was
replaced with this new number. This two step muta-
tion was carried out for each segment in the ruler. The
segment with the length of 1 was restricted to the first
type of mutation.

Because of the strict constraints imposed by the defini-
tion, Golomb rulers are highly susceptible to destruc-
tion under mutation. Therefore a copy of the ruler is
made before each mutation and if the mutation results
in a lower fitness score, then the old copy is used to
restore the ruler to its original values.

The original representation used employed a surplus
list. In that representation only the ruler portion was
mutated. If the mutation resulted in a change in seg-
ment length then a segment from the surplus was cho-

sen at random and swapped with the segment from
the ruler list.

3.5 SELECTION

The selection method used in this GA was tournament
selection. A variable number of individual rulers was
selected from the population at random. The scores of
the individuals were compared and the highest scoring
ruler was retained as parent number one (P;) for the
crossover operation. The process was repeated a sec-
ond time to obtain the second parent (P;). After the
crossover was performed the parents were returned to
the old population list and the children were placed in
the new population list. This was repeated until the
new population list was full.

3.6 CROSSOVER

Once the two parents were selected, it remained to
be determined if crossover should occur. A random
number was rolled and compared to the probability of
crossover (P.). If crossover was not performed, then
the two children were just clones of the two parents.
If crossover was performed, it was done in a fashion
similar to partially mapped two point crossover.

Before the crossover was carried out the two parents
were aligned with each other to reduce the chance of
crossing two mirror images and thus destroying a pos-
sible good ruler. Since it was determined that all good
rulers should have a segment of length one (Bloom,
Golomb 1977), this became the tool for alignment. If
the unit one segment was right of the center, the ruler’s
order was reversed.

The procedure for the crossover can be best described
by following an example through the operation. P;
and P, are the selected parents and C; and C; are the
children.

Pl: 2 1 5 4 6 3
P2: 4 5 7 6 8 1

7 8
2 3

Alignment reverses the order of parent two:

P1: 2 1 5 4 6 3 7 8
P2: 3 2 1 8 6 7 5 4

Cut points are randomly determined:

PI: 2 1 / 5 4 6 / 3 7 8
P2: 3 2 / 1 8 6 / T 5 4

The segments between the cut points are marked in
the opposite parent:

Pl: 2 1 / 5 4
P2: 3 2 / 1 8

[N}
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Table 2: Results of the Golomb Ruler Genetic Algorithm

O | LB | Sh || Pop | Gen | Time || Len | Rel Err || Representation

5 11 512 | 10 00.05 | 11 0% 2,5,1,3

6 17 512 | 22 00.15 || 17 0 1,7,3,2,4

7 25 512 | 22 00.17 || 25 0 1,6,4,9,3,2

8 34 1024 | 84 0:13 || 35 2.94 4,1,12,7,3,6,2

9 44 1024 | 433 1:22 || 44 0 1,4,7,13,2,8,6,3

10 55 1024 | 458 1:43 || 62 12.73 1,10,5,8,17,12,2,4,3

11 72 1024 | 152 0:39 || 79 9.72 2,5,1,22,11,9,12,4,10,3

12 85 1024 | 59 0:18 || 103 | 21.18 2,5,1,27,17,4,11,14,9,3,10

13 106 || 1024 | 664 4:03 || 124 | 16.98 1,5,19,23,9,22,12,16,2,8,3,4

14 || 114 | 127 || 2048 | 1506 | 21:38 || 168 | 32.28 6,9,1,4,7,17,32,19,18,22,8,23,2

15 || 133 | 151 || 2048 | 858 14:34 || 206 | 36.42 10,1,14,3,2,24,27,31,33,4,12,23,13,9
16 || 154 | 177 || 2048 | 708 26:29 || 238 | 36.46 1,6,3,13,5,29,30,11,5,39,42,2,17,24,8,4

The first child is created by copying the segments out-
side the cut points:

Pl: 2 1 / 5 4 6
c: 2 1 / - - -

/ 3 7 8
/ 3 7 8

Next the segments between the cut points are replaced
using the order they appear in the second parent:

ct.: 21/ 6 5 4 /J 3 7 8

The same procedure is used to create the second child.
In this case the roles of the first and second parent
are reversed. The full crossover is shown with both
parents and both children.

P1: 2 1 5 4 6 3 7 8
P22 3 2 1 8 6 7 5 4
Cl: 2 1 6 5 4 3 7 8
c2: 3 2 1 6 8 7 5 4

In the original representation both the ruler list and
the surplus list were used in the crossover. The par-
tially mapped crossover was performed in the same
way. The alignment differed in the method of align-
ing the surplus lists. The ruler lists were still aligned
to prevent crossing mirror images. The surplus list
did not benefit however from having a known segment
length that could be shifted to the left of the center.
Instead a Mean Square Difference (MSD) was found
by summing the squares of the difference of the ele-
ments in the two parents’ surplus lists. Next the sec-
ond parent’s list was reversed and a second MSD was
determined. The order of the second parent’s list that
produced the lower MSD was kept.

4 RESULTS

The performance of GA is shown in Table 2; the col-
umn denoted by the heading (O) indicates the order of

the ruler. The order of the ruler represents the number
of marks contained on the ruler. The columns (LB)
and (Sh) represent the computed Lower Bound and
the Shortest Known rulers of a given order(Robertson,
1994). If a lower bound is not given, then the length
reported in (Sh) has been proven to be the shortest
ruler. Columns (Pop) and (Gen) report the initial
population size and the number of generations required
to produce the reported length. The (Time) column
reports the execution time for the number of gener-
ations listed, measured in minutes and seconds. All
runs were made to a maximum number of generations
provided by the user that was higher than the listed
generations form Table 2. The (Len) and (Rel Err)
columns report the shortest length produced during
the run of the GA and the relative error of that length
with the shortest known length. Finally the (REP)
column shows the segment length representation of the
evolved Golomb Rulers.

The GA in this paper was written in C++ using ob-
ject oriented programming. A GA class was written to
be robust and to handle many types of GA. A popula-
tion member class was designed to work with the GA
class and yet not contain the knowledge of the GA
operators—in this way the operations of GA remain
general. To make a specific type of GA, a class was
created and was derived from the GA member. This
class was given member functions for the various GA
operators (i.e. Crossover, Mutate, Evaluate, Random-
ize, etc.) The software was written to be compiled
under GNU C++ version 2.5.0 and higher. This GA
was executed on a 60Mhz Pentium under the Linux
operating system. The execution times varied from
0.05 seconds for the n = 5 ruler to 26 minutes for the
n = 16 ruler. In an earlier program, one that employed
a heuristic based exhaustive search, the times varied
from 0.035 seconds for n = 5 to 6 weeks for n = 13.



The GA was able to evolve the shortest ruler in n = 5—
7,9. In n = 8 the GA evolved a ruler that was 1 unit
longer than the shortest known. For n = 10-16 the GA
was able to produce good rulers in under 30 minutes.
The number of valid rulers, (i.e. the rulers with no
repeated measurements), in the population was exam-
ined. Initially in the random population that initiated
the GA there were only 15 valid rulers out of 1024 for
the 8 mark ruler. This number grew rapidly and main-
tained a range of 65 to 75 percent of the population.

5 CONCLUSIONS

The purpose of machine intelligent optimization is not
necessarily to produce perfect results, but to produce
the best results under the constraints of time and cost.
This GA was successful in producing short rulers for
each of the orders.

5.1 FUTURE PROJECTS

Imagine a modification to the classic TSP, where in
addition to the cost of moving along the edges, we
assign a return for reaching the nodes. As in the classic
description of TSP, the salesman expends a cost to
travel from city to city, but now lets have him receive
a payment for sales at each city. He has a client list
of 100 cities but during this trip he can only visit 80
of them. Which cities does he go to, and in what
order does he visit them, to maximize his sales and
minimize his travel costs? This is another example of
an “incomplete ordered set”. The GA described in this
paper should prove effective for solving such a problem.
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