Hybrid Fuzzy-Neural Classifier for Feature Level Data Fusion in
LADAR Autonomous Target Recognition-

Stephen W. Soliday® and Melissa T. Perona® and Danial G. McCauley® and

Raytheon Company
%Tactical Mobile Robotics / FCS, C3I & Information Systems
bAdvanced Programs, Missile Systems
“Processor Technology Product Center, Electronic Systems

ABSTRACT

This paper will discuss the design of a hybrid fuzzy-neural classifier for fusion of range and intensity channels coming
from a LADAR sensor. Fusion was performed on a feature rather than pixel level. Results will be compared between
ATR performance with and with out fusion. Also, discussed in this paper is the use of genetic algorithms for the
training and optimization of the ATR system with a limited set of ground truth.

Keywords: Fuzzy, Neural, Genetic, Fusion, ATR, LADAR

1. INTRODUCTION
1.1. Overview

Raytheon has long experimented with various Automatic Target Recognition (ATR) techniques using LADAR data
of Critical Mobile Targets (CMT). The ability to test these concepts against moving targets in a real-time, moving-
platform environment, however, has been limited. This environment poses system-level restrictions on the memory
and throughput that the ATR algorithm may utilize, and hence limits the algorithm capability. Additionally,
system-level effects frequently alter the sensed data significantly from stationary-platform or, to a greater extent,
synthetic data. These restrictions have led to increased interest in machine intelligence as a means to perform target
identification. The ability to apply a hybrid fuzzy-neural algorithm to the classification problem has allowed increased
throughput and required less memory than other popular techniques.

2. LADAR ATR

The LADAR sensor returns two data channels, range and intensity. The range data must be motion compensated and
transformed to a coordinate system relative to a fixed point. At this point the data is segmented. In segmentation
the regions of interest ROI are tagged and listed. Geometric features are extracted from the range image and fused
at a feature level with reflectance features extracted from the intensity image. The features are fused using a hybrid
fuzzy-neural classifier that matches measured values against a tabulated target database.

2.1. Rapid Prototyping

The ATR system was built using a rapid prototyping system called Rippent. This allowed the development of
individual modules written in ANSI C. The modules were laid out in a flow-graph, see Section 2.2. Each module is
a self—contained object, and these are linked together to form an executable. The flow of data is determined at run—
time and may be saved for future runs. Rippen has the advantage of being multi—platform allowing the development
to be done on a host processor. In this case the host processor was a Sparc Station.

Copyright ©2001, Society of Photo—optical Instrumentation Engineers. This paper will be published in [Proceedings for Automatic
Target Recognition XI, SPIE, Jul 2001, ISBN 0-8194-4074-4] and is made available as an electronic preprint with permission of SPIE.
One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations
via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the
content of the paper are prohibited.

Further author information: (Send correspondence to S.W.S)

S.W.S.: Falls Church, Virgina 22042 USA, soliday@raytheon.com
M.T.P.: Tucson, Arizona 85734 USA, mtperona@west.raytheon.com
D.G.M.: Plano, Texas 75023 USA, E-mail: danmccauley@raytheon.com

fRippen is a registered trademark of Orincon

2.2. Flow-graph
2.2.1. Acquisition

The LADAR sensor returned two channels of data. The range data consists of a pixel image where each pixel has a
scaled value representative to the range between the detector and the scene. The intensity image is the strength of
the return signal. Both of these images are generated at the same resolution and at the same time, therefore they
may be assumed to be registered images.

2.2.2. Transformations

The range data required motion compensation to counteract the distance the sensor traveled between the beginning
and the end of a scan. The navigation data from the guidance system was used for performing these transformations.

The data was sheared and rotated to compensate for the movement of the sensor. This data combined with a
camera model and the navigation data was then used to generate three more images. The X, Y, & Z images represent
a coordinate system of north, east, and down (NED). For each pixel in the range image an X, Y, & Z coordinate
with the origin at the sensor was determined.

Tagged Geometric
Image Features

Acquire Motion Build Segment Hough Fuzzy Report
Image Comp Image Image Transform Logic Results
Tagged Bounding Box
Image
Build Extract
Image Reflect
Features

Figure 1. CMT LADAR ATR Algorithm

Reflectance
Features

Identification

2.2.3. Segmentation

The detection algorithm segments the scene into labeled regions of interest using motion compensated X, Y, and
Z images and an estimate of seeker position in the same coordinate system. The outputs of this algorithm are the
reconstructed range image, a tag list used by the classification and other tools to quickly index to sub-image regions,
and the tagged region image itself. All of these steps are done in a sparse X, Y array in NED space, which is
effectively a nadir view.

The tagging process groups pixels within a pre-specified ground grid size into bins using the X, Y, and Z pixel
values. Eliminating pixels that vary significantly from other members of the bin discards noise and dropout pixels.
The bins are classified as object types, such as “shadow”, or “tall” based on their neighbors. Adjacent bins are then
combined based on their relation in height and direction. Estimation of the ground plane is performed, and that
segment of the image is removed. Any remaining objects are examined for potential similar measures and grouped
accordingly. At this point, objects that are too large or too small are rejected, resulting in only target-sized objects
left for the classifier to analyze.

48 e

Figure 2. Clutter: (a) intensity (b) tagged Target:(c) intensity (d) tagged

The segmentor produced a list of regions of interest (ROI). These ROIs contained window coordinates into the X,
Y, and Z images. Additionally the segmentor produced a “tagged” image. This was an integer image that represented
the ROIs. Each segmented ROI, as well as the background, was labeled with a unique identifier. Additionally, any

area adjacent to the target that is indeterminate from ground pixels receives a label that is unique, but correlated to
the target label, such that it would be analyzed either separately from or in conjunction with the target if desired.

This tagged image was used to mask the intensity image. This hierarchy gave us a simple way to determine the
foreground and background pixels in the intensity image, See Figure 2. The example clutter image contained 131
object pixels, 29 shadow pixels and 65 background pixels. The example target image contained 178 object pixels, 34
shadow pixels and 130 background pixels.

2.2.4. Geometric Features

A Hough transform is used to generate the geometric features and to estimate target pose. The Hough returns both
dimensional and positional information. Due to the possibility of occlusion it is not possible to simple label the longer
of the two horizontal length measurement the long axis of the vehicle. Therefore two different aspects approximately
90 degrees apart are extracted from the histogram. Likewise, two more measurements are made approximately 180
degrees separated from the first two. All four of these measurements are presented to the classifier The extracted
features were as follows:

e Range — average distance in meters between the detector and the object pixels in a given ROI
e Elevation — look-down angle of the ROI

e Aspect angle — two long axis and two short axis measurements. Zero is looking down the estimated long
axis. Each of the four aspects has a measurement for dimension:
— Length — long axis length
— Height — length perpendicular to the long axis
— Width — height above the estimated ground plane

These geometric features are used to classify ROI against tabulated geometries of known vehicles.

2.2.5. Reflectance Features

Two principle reflectance features were extracted from the intensity image. Mean reflectance was determined by
examining only the intensity of the object pixels for an individual ROI. The object pixels were determined by the
tagged image received from the segmentor, see Section 2.2.3. The second feature was contrast. This feature measured
the relative reflectance between a target-like object and that of a “typical” background. Natural objects tended to
have low contrast against the natural background. Variance of the object pixels was also examined. This feature did
not have a significant effect on identification, within the limited training set. The improvement in identification was
not deemed to offset the computational cost to include the additional feature, both to feature extraction and to the
classifier itself.

2.2.6. Target Database

Table 1. TargetDB.dat - Target database

4 7 mods path length width height
SA13 /target 6.18 2.87 1.96
SA13 UP /target 6.18 287 3.24
SA8 Q@clutter 8.50 3.38 413
ZIL Qclutter 6.63 3.00 2.85

The target database consisted of one vehicle entry per line, See Table 1. The first column provided the name of
the target. The next column had multiple purposes. It could act as a pathname to a classifier data base, or simply as
a target type tag. By using the tag @clutter a vehicle that matches that entry could be rejected. It was determined
that to positively identify a vehicle and then call it a non-target was superior in performance than to reject a vehicle

because it did not match one in the database. It is important to note that the purpose of incorporating reflectance
features was to help distinguish natural from man made. By placing a non-target vehicle in this database it reduced
the classifier’s confusion to be told that reflectance features characteristic to a man-made object should be rejected
as clutter. The final columns contained the tabulated length, width, and height of the target vehicle. Originally
this was just the tabulated dimensions of the vehicle.! There was a near linear scaling factor noticed between the
tabulated values and the actual values produced by the Hough.

2.2.7. Model Matching

The target classifier is not a classifier in the traditional sense. The classifier did not group targets based on their
height, length, and width. Instead, for each tabulated vehicle in the database an error between the measured value
and the tabulated value was determined. These errors were presented to the classifier in order to receive a score that
determined how well the measured values “matched” the tabulated values. The range, elevation and aspect modified
the allowable error in height, length, and width. The advantage to using fuzzy-logic was that often two really small
errors out-weighed three average errors. This helped make matches when one of the three dimensions was partially
occluded.

In this sense the classifier rules reflected less knowledge about the sizes of particular vehicles and more knowledge
about the sensor’s and the Hough’s ability to correctly measure geometric features. This allowed the addition of a
new target vehicle not contained in the training runs, see Section 6.3. Using only geometric features it was a straight
forward task to design a rule base for transforming the geometric measurements into scores.

The principle problem with using only geometry for ATR is that a 6.6 x 3.0 x 2.8 meter bush could easily be
classified as a 5-ton truck. Table 3, in Section 6.1, illustrated the limited performance of the ATR with the ground
truthed data available.

Material information about the ROI was necessary. This data was available from the intensity channel of data. By
fusing the geometric features with reflectance features extracted from the intensity image the clutter was successfully
separated from the targets, see Section 6.2.

3. FUZZY-LOGIC

Crisp Output
Universe of P P
Discourse
Fuzzy Sets

Fuzzy Output

Crisp Input

= Universe of
Discourse
Fuzzy Sets

Rules
Fuzzy (min-max)

or
Neural-network

Fuzzy Input

Figure 3. Fuzzy-logic allows mixed mode Input/OQutput

Fuzzy-logic is proven classifier technology. It has the ability to operate in environments of incomplete data. The
model matching requirement of the CMT ATR required that the system be able to make partial matches. If one
dimension of the target is obscured behind clutter, the ATR system must be capable of making a match based on
the remaining two dimensions.

A typical fuzzy rule based systems has three major components, see Figure 3. First, crisp numbers are assigned
fuzzy memberships. Second, these memberships are applied to the rule base. Rules are traditionally expressed in
Min-max pairs. That is; If condition (A) and condition (B) then perform response (C). The three basic fuzzy rules
correspond with their boolean counter parts. Correspondence occurs when fuzzy membership is set to the extreme
values of (0) for no membership, or (1) for complete membership. When this condition is met the fuzzy operator
must provide the same response as its boolean counter part:

AND(a,b) = min(a,b)
OR(a,b) = max(a,b) (1)
NOT(@) = 1l-a

Small Medium Large

I'J'medium (x) = 0.367
e 00 = 0.633

10 C=70 R = 130
X = 108

L

Figure 4. Determining Fuzzy Memberships

3.1. Fuzzy Memberships

Figure 4 is a collection of fuzzy sets known as a universe of discourse (UOD). A crisp numerical value has a degree
of membership between zero and one in each of the fuzzy—sets within a UOD. To say that 108 has a degree of
membership equal to 0.633 in the set of large is not the same as saying that 108 is 63 percent large. Memberships
are degrees of belonging not probabilities. In boolean logic there would be a threshold at 100. A value of 108 would
be labeled true for large and false for medium and small. The rules would then only operate on the boolean values,
producing a true or false result for each rule. Fuzzy logic allows rules to operate on the memberships resulting in
varying memberships of output. These outputs are gathered using a centroid operator to produce a crisp output.

3.2. Replacing Rules with Neural Network

Table 2. Require Number of Rules

sets / UOD | # of inputs || # of rules
3 3 27
3 4 81
3 5 243
3 6 729

There are three reasons for replacing a fuzzy-rules—table with a learning network. The first was a practical
reason. As the number of inputs to a classifier increase the number of rules required to describe the mapping
increases exponentially, see Table 2. The second was related to the fist as it involves the speed of processing. A
feed forward network consisting of only 28 neurons is far less expensive, computationally, then processing 729 fuzzy
rules, see Section 4.1. The third reason was a requirement that the classifier learn. The process of mapping errors
in geometric measurements was well understood. The mapping of reflectance characteristics to dividing man—made
objects from natural clutter was not as easily understood. This required a classifier that could “learn” this process
when exposed to ground truthed data. Feed forward neural-networks have been shown to learn relationships in very
non-linear systems.

3.3. Neural-network

Each layer of a neural-network is made up of processing elements (PE) or neurons. Each PE is connected to the
outputs of all of the PEs from the previous layer. Each connection is weighted. The weights are multiplied by the
output of the connected PE, these products are summed and added to a bias.

Mayer-1-1

Ilayer,node = Wlayer—l,node + Z Wlayer,node,j 'Xlayer—l,j (2)
§=0

Reyerinode

X

layer-1,0

X
layer-1.1 layer,node

X

layer-1,N-1

Bias =1

Figure 5. Neural-network Neuron

This sum is then “squashed” by a transfer function. The transfer function is designed to produce a bounded output
from an unbounded input.

Xlayer,node =/ layer (Ilayer,node) 3)

In this hybrid classifier, each layer had a unique transfer function, see Figure 6.

X layer,node X layer,node X layer,node

| | layer,node | : layer.node | : layer.node

Figure 6. Transfer Functions

The input layer received unweighted numbers that were bound between zero and one. Therefore, the transfer
function was linear with no scaling. This had the effect of making the input layer a layer of distribution nodes. The
hidden layer or the first processing layer used a sigmoidal transfer function with a steep of thresholding characteristic.
The output layer, or second processing layer, had a central slope to ensure a gradual spread from negative—one to
positive-one assuming eight connections and one bias with weight bounded between negative—one and positive—one.

4. FEATURE LEVEL DATA FUSION

Fusion was performed at the feature level rather than the pixel or data level. The advantage to this is that the source
data need not be registered. By this it is meant that resolution, and special orientation are not necessary. When data
pixels are combined it is to create a new image with data that is derived in some mathematical mapping between
the source images. When features are independently extracted from differing types of images that quantitative
association between pixels in not necessary. The only thing that is required is that the two ROIs cover the same
target.

In this case, the data came from the same sensor so it was accepted that a segmented ROI was the same in both
the range and the intensity images. Geometric features from the range data were combined with the reflectance
features extracted from the intensity image. These features made up the inputs to the fuzzy-neural classifier.

4.1. Fuzzy-neural Classifier

The heart of the LADAR ATR system is the target classifier. This classifier attempts to match measured values to
those in a database and provide the system with a degree of match (or a score.) The crisp inputs are presented to
fuzzy UODs to produce degrees of membership in fuzzy sets, see Section 3.1.

The first input is the aspect angle of the target in the ROI. This input is applied to a cyclic fuzzy UOD. The
next three inputs are the errors between measured dimensions of length, width, and height and the tabulated values

Neural—-network !
replaces fuzzy rules table

M 3-Layer Feed Forward
\

)

N

N
A

X
D
\\\

NN

N

N

Ny

N

N

N

AV efieet --- - !

Contrast ... -

Figure 7. Hybrid Fuzzy-neural Classifier

in the target database. The next input is the average range of the pixels in the segmented ROI. The last two inputs
are the extracted reflectance features, reflectance, and contrast.

The fuzzy UODs transform the seven crisp values into nineteen fuzzy memberships. These memberships are
processed by the rules. In this case the rules are implemented by a three layer fully interconnected feed forward
neural network. The number of input layers is governed by the number of features being classified. The output is a
single score. The number of hidden layers began by using the rule of thumb that states the number of hidden layer
neurons should be \/n -m. Where (n) is the number of inputs and (m) is the number of outputs.? The number
was then manually adjusted up and down to produce the desired classification. Fight was determined to be the
optimal number. Seven significantly decreased the performance, and nine did not show an improvement worth the
computational expense.

4.2. Adjustable Parameters

The classifier is defined by a weights file that contains the adjustable parameters. This file contains thresholds for
length width and height measurement errors, see Section 2.2.7. If a measured dimension exceeds any one of these
numbers the ROI is declared clutter and no further processing is made. There also Any classifier score below this
number is identified as clutter. This number may be manually adjusted to allow more or less clutter through the
system. In addition this file contains the fuzzy set parameters. The low and high fuzzy sets for each geometric
and reflectance feature were defined statistically from the test data. The middle fuzzy set for each feature was an
adjustable parameter. Finally, the file contained the weights for the neural-network. The topology of the network
was fixed but the weights were adjustable. In all there are 179 adjustable floating point numbers that define the
behavior of the hybrid fuzzy—neural classifier for the LADAR ATR system.

5. TRAINING
5.1. Tower Data

The training set data was derived from the manual ground truth of data collected for a similar LADAR sensor.
Data was collected from a prototype LADAR. The LADAR was mounted on a tower. The targets were stationary
in a field with trees and other clutter, at various articulations and ranges. From the images that were acquired a
manual ground truth was performed. Approximately 195 examples of clutter were manually verified. Approximately
62 targets were manually identified and truthed. This constituted the entire training set.

5.2. Problems for BPN with small Ground Truth

Back-propagation requires, like most gradient decent models, a great deal of training set data. Typically, there needs
to be on the order of thousands exemplars per input of data to get proper convergence. Additionally to support
generalization and prevent building an interpolative network it is required to have approximately half again as many
exemplars for testing purposes.?

Initial training sessions showed very poor convergence. There was not enough data to split off a separate set of
data to be used only for testing. There was also the problem of generating a derivative for the various inputs. A
non gradient method needed to be employed. In a previous project by this author a genetic algorithm was used to
train the weights of a neural-network classifier for line quality assessment in autonomous image registration. The
genetic algorithm proved superior to back propagation due to the limited training set and also the non uniformity
of the exemplars to cover the input space. The ground truthed data used here had a similar bias. There was more
than three times the amount of clutter then targets. It was decided that a Genetic Algorithm should be considered.

5.3. GA Solution

Genetic Algorithm (GA) is a search algorithm that borrows its operators from the biological model of natural
selection and evolution.®> GA have been very successful in combinatorially-explosive problems such as; Job Shop
Scheduling,*” The Non-linear Transportation Model,21° and the Traveling Salesman Problem?!!~13 14-17

GA differ from traditional optimization and search algorithms®:

Genetic Algorithm | Traditional Optimization and Search
work with coding of the parameters manipulate parameters directly

search from a population of points use a single point to search

use payoff (objective function) information | use derivatives or auxiliary knowledge

use probabilistic transition rules use deterministic rules

Genetic algorithms are very different form traditional calculus based approaches to optimization. While most
calculus based algorithms operate directly on the parameters to be optimized, genetic algorithms may operate on
representations of those parameters. Instead of a single point search as in conventional algorithms, genetic algorithms
perform population searches. This invites the use of massively parallel processing. Each member of the population
may be evaluated simultaneously. Genetic algorithms may be guided by more “qualitative” evaluation than “quan-
titative.” This means that metrics are generated as a function of final performance. Conventional algorithms often
need knowledge of the derivative affects of the individual parameters on the final metric for performance. Genetic
algorithms may optimize a set of initial parameters for a model whose internal characteristics are completely un-
known. Very non-linear systems may thus be optimized with relative ease. Another advantage is that calculus base
optimization almost always requires the score surface to be continuous. With GAs it is only necessary to be able to
“hold up” two candidate solutions and “say” which of the two is better.

5.3.1. Operators

Initialization

ul

Fitness . .
N Selection
| Evaluation Crossover Mutation

Figure 8. Genetic Algorithm

Similar to simulated annealing, GA uses a population of possible solutions to search the solution space. GA uses
biologically inspired operators to improve the search, see Figure 8. These operators alter the population and allow
information about possible solutions to be shared amongst the individuals. The basic GA has the following operators
that affect the population:

e Initialization — The initial generation should be uniformly distributed across the parameter space.

e Fitness Evaluation — Each member of the population is a potential solution. Fitness is assigned to each trail
solution.

e Selection — Allows individuals with higher fitness to have an exponentially greater chance of participating in
the next generation.

e Cross—over — Individual that have been selected may share information about the solution space.

e Mutation — Individuals in the next generation make small moves about the parameter space.

Each of the following sections will begin with a statement describing the function of the particular operator as it
pertains to genetic algorithms in general. This is followed by a discussion of how the operator has been implemented
to handle this particular problem, thus making this tool a hybrid genetic algorithm.

Representation: Each member of the population is expressed as a set of adjustable parameters for a model. Each
element of this set is referred to as an allele. The adjustable parameters in this ATR classifier were all floating point
numbers, see Section 4.2. A variant of the simple genetic algorithm was used. The floating point genetic algorithm
uses an array of floating—point numbers as its allele representation. The subsequent operators are all modified to
accommodate the floating—point math as opposed to boolean operations performed on the alleles of a simple genetic
algorithm.

Selection Individuals from the current population must be selected to generate the population that represents
the next generation. Selection schemes must be designed to insure that highly fit individuals are selected at an
exponentially greater rate than lower fit individuals. Low fit individuals must have a finite chance of being selected.
While their overall fitness scores may be low, they may contain “pieces” of the optimal solution. This is the key
premise in Holland’s Schema Theorem.'®

Tournament selection was chosen as the selection scheme. Tournament selection is superior to other stochastic
selection schemes, because it readily maximizes as well as minimizes fitness scores. Individuals do not need to be
ranked against the population as a whole. This allows the use of more “qualitative” and less “quantitative” means
of determining fitness, see Section 5.3.2.

Selection is made uniformly and randomly with replacement. A fixed number of individuals are selected from
the population and their relative fitness is examined. A functioned named isLeftbetter was created to assist the
programmer in building the selection process. When presented with two selected parameter lists the function returns
a boolean value indicating whether the left argument to the function call was the population index for the better of
the two parameter lists when used to define the ATR classifier. The winning parameter set is then held out as parent
number one. The process is repeated for parent number two, with that added test to insure that the two parents
were not the same parameter list. These two parents were then used in the cross—over function to generate the next
generation, see above.

Crossover: Members of the population may exchange information and explore new regions of the solution space.
Members of the population are selected based on their relative fitness, see Section 5.3.1 (Selection). There is a finite
probability that these members will simply be cloned into the next generation, thus preserving their representations.
Otherwise they exchange information about their parameter lists to generate wholly new population members. The
probability that the selected parents would undergo cross—over, thereby producing children, was set at 95 percent
for this application. This number showed particularly fast convergence. An analysis of adjusting probabilities and
the affect on convergence rates is not within the scope of this paper.

The adjustable parameters in this ATR classifier were all floating point numbers, see Section 4.2. Therefore the
cross—over operator was implemented using floating—point parametric crossover.

P =
P =

{$1,$2,$3,...,$n} Cl = (
= {y17y27y37"'5$n} 02 = (]-

<0 b
|

()Y
H (4)

Figure 9. Floating point parametric crossover

Figure 9 graphically illustrates the results of the above equations. The two parents represent two points in
n—dimensional parameter space. A uniform random number between zero and one was generated. This became
the parametric index (¢). The first child is then found on a line between the two parents. The second child is
symmetrically found on the same line.

Mutation: This the operator introduces change into the population. This allows the genetic algorithm to explore
new regions of the solution space that might not be accessible through the cross—over operator. The adjustable
parameters in this ATR classifier were all floating point numbers, see Section 4.2. The mutation operator was
implemented using the addition of Gaussian noise. The probability of mutation was applied to each allele of each
representation of parameter set. For this reason the probability of mutation was held very low. Less than five percent
of all adjustable parameters were mutated. Mutation was a very small amount of Gaussian noise as defined by the
following equation.

Z; 141 = rndGauss (low;, high;, z; ¢, 0¢) (5)

The current value for an allele was the mean. The standard deviation was reduced uniformly from 0.1 to 0.0 as
a function of the number of generations into the evolution cycle. The low and high boundaries were set individually
for each adjustable parameter.

The mutation operator was also used in the initialization of the first population. Half of the initial population had
its adjustable parameters set completely at random and uniformly within the low and high bounds of each parameter.
The second half of the population was initialized by adding Gaussian noise to a single provided parameter list. This
list may have been a human’s best guess or it may have been the best parameter list that was found in a previous
training run. This illustrates one of the features that makes genetic algorithms superior to other optimization
algorithms. The training may begin from a previous known solution or even a human’s “best guess.”

5.3.2. Metrics

Metrics are the most important part of using a genetic algorithm to optimize a set of parameters. It is absolutely
necessary to be able to “hold up” two models with different adjustable parameter values and “say” which of the two
is better.

Tournament selection allowed the use of a “heuristic sequence” rather than an equation to determine fitness. Three
key points were examined in sequence to determine which parameter set performed better as a target classifier:

1. How many objects passed as targets were correctly identified?
2. How many targets were identified as clutter?

3. How many pieces of clutter were accepted as targets?

Determination of which which parameter set was better began with looking at the reporting tables, see Tables 3
& 4. The chief determining factor was how many targets where correctly identified. If one classifier correctly
identified targets more than the other, that classifier was declared better. If both classifiers identified that same
number of targets correctly then the next metric was examined. Determination of the better classifier was then made
by minimizing the number of targets that were declared as clutter. If both of these metrics were equal for the tested

classifiers then the determining metric became how much clutter was being accepted by the classifiers and identified
as targets. Finally, as an arbitrary decision for uniformity, if all metrics were equal the “left” classifier was declared
the winner, see Section 5.3.1 (Selection).

6. RESULTS

6.1. Geometric Features Only

Table 3. Geometric Features Only

ID = 35 | Clutter | Target

Reject 130 10 140

pass 65 52 117
195 62

The performance of the original classifier with only geometric features was less than desirable. The system passed
65 out of 195 tagged regions as targets when they were ground truthed to be trees or bushes. Also, 10 of the ground
truthed targets where rejected as being clutter. After, analyzing the rejected targets it was found that most had
large errors in at least two of their dimensions. The clutter that was passed was found to have at least two very good
matches in each dimension. it was clear that other features would be needed to reject the natural clutter from the
man made objects.

6.2. Fusion with Reflectance Features

Table 4. Geometric + Reflectance Features

ID = 58 | Clutter | Target

Reject 195 0 195

pass 0 62 62
195 62

After the reflectance features were added to the classifier and the classifier was trained on the ground truthed
data the performance was drastically improved. All clutter items were rejected as clutter. All of the “man made”
objects were passed as targets. 58 of the 62 targets were then correctly identified. Three of the SA-6 radars were
identified as SA-6 TELs and one of the “Specials” was reported in the wrong articulation.

6.3. Conclusion

The analysis and experiments performed during the CMT project have effectively demonstrated the use of a hybrid
fuzzy-neural network for critical mobile target identification for LADAR sensors. Additionally, we have illustrated
the ability to train such a classifier with additional features available from that sensor to improve performance.

This classifier has since been tested on other target types in various conditions, and has illustrated relatively
robust performance in clutter rejection, identification, and articulation discrimination within classes. The fact that
features can be easily added and the system may be relatively quickly re-trained will provide ample opportunity for
further feature extraction for classification, particularly if improvements in detection allow increased throughput or
data integrity.

Section 2.2.7 mentioned that the classifier “learned” the capabilities of the sensor and segmentor to correctly
measure a vehicles dimensions. This created a robustness that was demonstrated during field tests. The dimensions
of the SA8 were removed from the target database. A new entry was made for SA13s. SA13s were not part of the
limited training set, see Section 5.1. The ATR system proved to be able to identify the SA13 during subsequent field
tests.

ACKNOWLEDGMENTS

The authors would like to thank the supporting staff for the ATR CMT team, which included members from various
states, as well as functional and program organizations. From the Raytheon Engineering Directorate in Tucson,

AZ,

Dave Bujak, Brian Lacy, Lee McDonald, Sandra Morris, and David Vega provided invaluable software, and

algorithm support. Thanks are also due to the Advanced Programs management teams, who provided funding and
moral support during this effort.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18

REFERENCES

C. F. Foss, Jane’s Tank & Combat Vehicle Recognition Guide, Harper Collins, Glasgow, 1996. ISBN: 0-00—
470995-0.

R. Hecht-Nielsen, Neurocomputing, Addison Wesley, Reading, MA, 1990.

D. E. Goldberg, Genetic Algorithms, in Search, Optimization € Machine Learning, Addison—Wesley Publishing
Company, Inc., Massachusetts, 1989.

G. E. Liepins, M. R. Hilliard, and M. M., “Greedy genetics,” in Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic Algorithms, pp. 231-235, Lawrence Erlbaum
Associates, 1987.

D. Smith and L. Davis, “Adaptive design for layout synthesis,” internal report, Texas Instruments, Dallas, 1985.
D. Whitley and T. Starkweather, “Genitor ii: A distributed genetic algorithm,” J. Expt. Thoer. Artif. Intell. 2,
pp. 189-214, 1989.

G. A. Cleveland and S. F. Smith, “Using genetic algorithms to schedule flow shop releases,” in Proceedings
of the Third International Conference for Genetic Algorithms, Schafer, ed., pp. 160-169, Morgan Kaufmann
Publishers, Inc., 1989.

Z. Michalewicz and C. Z. Janikow, “Genetic algorithms for numerical optimization,” Statistics and Computers
1(2), 19xx.

Z. Michalewicz, C. Z. Janikow, and K. J. B., “A modified genetic algorithm for optimal control problems,” 29th
CDC ', 1990.

Z. Michalewicz, G. A. Vignaux, and M. Hobbs, “A non-standard genetic algorithm for the nonlinear transporta-
tion problem,” Accepted for Publication in the ORSA Jouwrnal of Computing , 19xx.

D. E. Goldberg and L. R., “Alleles, loci and the traveling salesman problem,” in Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on Genetic Algorithms, Grefebstette, ed.,
Lawrence Erlbaum Associates, 1985.

I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation crossover operators on the traveling
salesman problem,” in Genetic Algorithms and Their Applications: Proceedings of the Second International
Conference of Genetic Algorithms, Grefenstette, ed., pp. 224-230, Lawerence Erlbaum Associates, 1987.

J. J. Grefenstette, R. Gopal, R. Rosmaita, and G. D. V., “Genetic algorithms for the traveling salesman prob-
lem,” in Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on
Genetic Algorithms, Grefebstette, ed., pp. 154-159, Texas Instrument and U.S. Navy Center for Applied Re-
search and Artificial Intelligence, 1985.

J. P., J. Y. Suh, and V. D., “The effects of population size, heuristic crossover and local improvement on a
genetic algorithm for the traveling salesman problem,” in Proceedings of the Third International Conference for
Genetic Algorithms, S. J. D., ed., pp. 110-115, Morgan Kauffmann Publishers, Inc., 1989.

G. E. Liepins, M. R. Hilliard, J. Richrdson, and M. Palmer, “Genetic algorithm applications to set covering
and traveling salesman problems,” in Operations Research and Artificial Intelligence: the Integration of Problem
Solving Strategies, Brown and White, eds., pp. 29-57, Kluwer Academic Press, 1990.

M. L. Lid, “Traveling salesman problem domain application of a fundamentally new approach to utilizing genetic
algorithms,” tech. rep., Air Force Office of Scientific Research and Office of Naval Research, 1991. Research
sponsored by Contract F4920-90-G—-0033.

D. Whitley, T. Starkweather, and F. D.;, “Scheduling problems and traveling salesman: the genetic edge re-
combination operator,” in Proceedings of the Third International Conference for Genetic Algorithms, Schafer,
ed., pp. 133-140, Morgan Kaufmann Publishers, Inc., 1989.

J. H. Holland, Hidden Order, How Adaptation Builds Complezity, Addison—Wesley Publishing Company, 1995.

